대회 후기2 [Santander Product Recommendation] 전혀 다른 모델 활용하기(MLP) 이번에는 XGBOOST가 아닌 MLP(Multi Layer Perceptron)을 활용한 학습한 내용에 대해 포스팅하겠습니다. 이번 포스팅은 아래 링크를 참고하였으니 더 자세한 내용이나 코드를 원하시는 분은 아래 참고 바랍니다. https://www.kaggle.com/hachemsfar/keras 많은 대회를 참가하지 않았지만 대회 리뷰들을 읽다보면 의외로 MLP가 좋은 성적을 거두는 경우들이 있습니다. 물론 MLP만 활용하는 것은 아니고 MLP와 다른 모델을 섞어서 다양성을 주는 겁니다. 이때 MLP를 학습시키는 게 매우 어려울때가 많습니다. 적당한 Hyperparameter들을 세팅해주지 않으면 생각처럼 학습이 잘 되지 않습니다. 기존에 세팅해뒀던 Baseline을 기반으로 모델만 변경하여 학습해봤.. 2019. 12. 25. [Santander Product Recommendation] Feature engineering 어렵게, 정말 어렵게 Baseline을 구축했습니다. 쉽게 갈 수 있는 길을 어렵게 돌아온 이유는 생각해보면 문제에 대한 이해를 후순위에 두고 기술적으로만 접근했기 때문인 것 같습니다. 큰 교훈 하나 얻었으니 다음 대회부턴 문제에 대한 이해를 우선시 해야겠습니다. 아무튼 현재까지 구축된 Baseline을 기반으로 모델 성능을 Improve 하는 시도를 해보겠습니다. 1. Baseline : Public Score 0.01088 - lag-1 값(지난달 개인정보 + 보유 상품)을 신규 Feature로 하고 3 Folds(shuffle =True)로 CV 했을때 결과 입니다. - 생각보다 결과가 나빴지만 어렵게 구축한 Baseline인 만큼 만족하고 다음 단계로 넘어갔습니다. 2. Fold 구성 방식 변경 .. 2019. 12. 25. 이전 1 다음